Soluzione del tema d'esame di matematica, A.S. 2005/2006

Niccolò Desenzani * Sun-ra J.N. Mosconi † 22 giugno 2006

Problema 1

- 1. Indicando con A e B i lati del rettangolo, il perimetro è $2A + 2B = \lambda$ mentre l'area è A = AB. Dalla prima deduciamo $B = \lambda/2 A$ e inserendo nella seconda $A = A(\lambda/2 A)$ che è una parabola con la concavità rivolta verso il basso nella variabile indipendente A. Avendo soluzioni A = 0 e $A = \lambda/2$, assume massimo nel punto intermedio $A_{max} = \lambda/4$ e quindi $B = A = \lambda/4$ e l'aiuola di area massima è un quadrato di superficie $\lambda^2/16$.
- 2. Detti P_Q e P_C i perimetri del quadrato di lato l e del cerchio di raggio r rispettivamente, si ha $P_Q=4l$ mentre $P_C=2\pi r$. Le aree rispettive sono quindi $\mathcal{A}_Q=P_Q^2/16$ e $\mathcal{A}_C=P_C^2/4\pi$. Essendo $P_Q+P_C=\lambda$ possiamo esprimere la somma delle aree in funzione di P_Q come

$$\mathcal{A}_{tot} = \frac{4+\pi}{16\pi} P_Q^2 - \frac{\lambda}{2\pi} P_Q + \frac{\lambda^2}{4}$$

che è una parabola con concavità rivolta verso l'alto e vertice in corrispondenza di $P_Q=\frac{4\lambda}{4+\pi}$ che fornisce il minimo dell'area con l'aiuola quadrata di lato $\frac{\lambda}{4+\pi}$ e l'aiuola circolare di raggio $\frac{\lambda}{8+2\pi}$.

3. Il massimo si ottiene quando tutto il filo viene utilizzato per delimitare l'aiuola circolare, di raggio $\lambda/2\pi$.

Ogni lato della nuova scatola è 11/10 del lato iniziale, dunque il volume della scatola ingrandita è $\left(\frac{11}{10}\right)^3$ dell' iniziale, determinandone così un incremento del 33, 1%.

^{*}Elicit

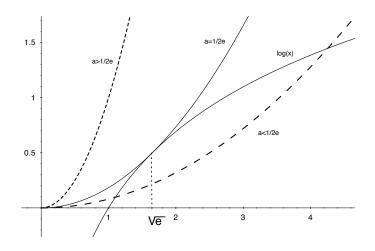
[†]Politecnico di Milano

Problema 2

1. Per $a \leq 0$ f è crescente e g è non crescente sul dominio di definizione di f. Poichè in x=1 f(1)=0 e $g(1)\leq 0$ per il teorema degli zeri si ha un'unica soluzione. Per a>0 la condizione di tangenza implica l'uguaglianza delle derivate, ossia

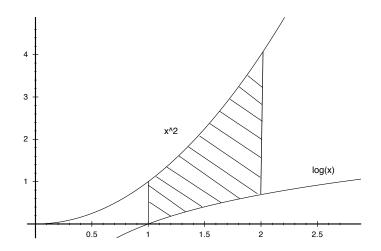
$$f'(x) = g'(x)$$
 \Leftrightarrow $\frac{1}{x} = 2ax$ \Leftrightarrow $x = \frac{1}{\sqrt{2a}}$

(nel dominio $\{x>0\}$ del logaritmo). Sostituendo il valore trovato nell'equazione f(x)=g(x) si ottiene a=1/2e. Per questo valore di a si ha quindi tangenza delle funzioni nel punto di ascissa \sqrt{e} . Essendo g crescente in a, se a>1/2e non si hanno soluzioni. Se invece 0< a<1/2e si hanno esattamente due soluzioni, dal momento che f-g è una funzione concava, quindi ha al massimo due intersezioni con l'asse x.

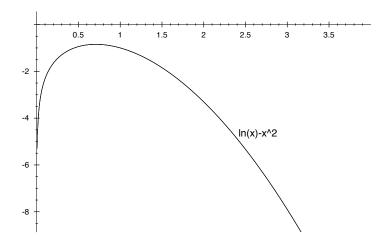


2. Essendo a=1>1/2e si ha g>f per ogni x>0, quindi l'area indicata (tratteggiata in figura) si ottiene integrando g-f fra 1 e 2, ottenendo

$$Area = \int_{1}^{2} (x^{2} - \log x) dx = \frac{x^{3}}{3} - x \log x + x \Big|_{1}^{2} = \frac{10}{3} - 2 \log 2$$



3. Il dominio di $\log x - ax^2$ è $\{x > 0\}$, e si ha $\lim_{x \to 0^+} h(x) = -\infty$, $\lim_{x \to +\infty} h(x) = -\infty$ (osservando che a > 0). Il segno è sempre negativo, essendo a > 1/2e e la derivata è positiva in $(0, 1/\sqrt{2a})$, negativa in $(1/\sqrt{2a}, +\infty)$ e nulla in $1/\sqrt{2a}$, dove quindi la funzione ha massimo assoluto. Non vi sono asintoti obliqui né orizzontali dal momento che $h'(x) \to -\infty$ per $x \to +\infty$. Infine la funzione è concava in quanto somma di funzioni concave. In figura è rappresentato il grafico nel caso a=1.



Questionario

1. Il numero totale di chicchi si ottiene come somma della serie geometrica

$$1 + 2 + 2^2 + \dots + 2^{63} = \sum_{n=0}^{63} 2^n = 2^{64} - 1$$

da cui deduciamo il peso totale in tonnellate P_{ton} come

$$P_{ton} = \frac{1}{10^6} P_g = 10^{-6} \left(38 \frac{2^{64} - 1}{10^3} \right) \simeq 38 \frac{2^{64}}{10^9} \simeq 700976471852, 37$$

(dove P_g è il peso in grammi) ossia circa 701 miliardi di tonnellate!

- 2. Si osserva innanzi tutto che la somma degli angoli delle facce che si incontrano in un vertice di un poliedro deve essere strettamente minore di 360°. Inoltre per formare un vertice sono necessarie almeno tre facce. Nel caso le facce siano triangolari, gli angoli saranno di 60°, quindi abbiamo tre possibilità:
 - (a) 3 facce: la somma degli angoli è 180°, e si ottiene il tetraedro.
 - (b) 4 facce: la somma degli angoli è 240°, e si ottiene l'ottaedro.
 - (c) 5 facce: la somma degli angoli è 300°, e si ottiene l'icosaedro.

Nel caso di facce quadrate gli angoli saranno di 90° quindi le facce incidenti in un vertice non possono essere più di 3 (con somma 270°), generando il cubo. Per facce pentagonali, la somma degli angoli può essere al massimo $3\times108^\circ=324^\circ$ corrispondente al caso del dodecaedro. Se il numero di lati delle facce è maggiore o uguale a 6 l'angolo al vertice del poligono è maggiore o uguale 120° e quindi la somma di almeno tre di questi angoli è maggiore o uguale a 360° .

- 3. Siano a e b i lati dell'area di stampa. L'area del foglio (in centimetri quadrati) sarà pari a (a+8)(b+4). Essendo ab=50 si ha b=50/a e quindi l'area del foglio sarà (a+8)(50/a+4). Studiando la funzione della variabile indipendente a così ottenuta, si osserva che essa assume minimo (in $\{a>0\}$) per a=10, da cui b=5. Si ottiene quindi che il foglio di area massima ha misure 18×9 .
- 4. Essendo la diagonale di un cubo $\sqrt{3}$ volte il lato e osservando che la diagonale del cubo inscitto è un diametro della sfera si ha che il lato del cubo è $1/\sqrt{3}$ metri e il volume $1/3\sqrt{3}$ metri cubi, pari a circa 192, 45 litri.

5. Posto

$$(a+b)^n = c_0 a^n + c_1 a^{n-1} b + \dots + c_n b^n$$

per calcolare la somma dei coefficienti c_1, \ldots, c_n è sufficiente porre a = b = 1, ottenendo

$$2^{n} = (1+1)^{n} = c_0 + c_1 + \dots + c_n.$$

6. Poniamo innanzitutto y=2x, con $30^{\circ} < y < 90^{\circ}$. Osservando che k=0 non può mai dare soluzione, dobbiamo determinare per quali valori di k l'equazione

$$\cos y = \frac{5k - 2}{k}$$

ha soluzione per $30^\circ < y < 90^\circ$. In questo dato intervallo la funzione coseno assume tutti e soli i valori strettamente compresi fra $0=\cos 90^\circ$ e $\sqrt{3}/2=\cos 30^\circ$. Risolvendo il conseguente sistema di disequazioni

$$\begin{cases} \frac{5k-2}{k} > 0\\ \frac{5k-2}{k} < \frac{\sqrt{3}}{2} \end{cases}$$

si ottiene $\frac{2}{5} < k < \frac{4}{10 - \sqrt{3}}$.

7. La funzione soddisfa le ipotesi del teorema di lagrange perché è continua e derivabile in tutto [0,1]. Osserviamo preliminarmente che il punto ξ citato nel teorema deve essere interno all'intervallo. Ponendo a=0 b=1 e risolvendo in ξ nella formula data si ottiene l'equazione

$$-1 = 3\xi^2 - 4\xi$$

che fornisce le soluzioni $\xi=1/3$ e $\xi=1,$ di cui la seconda va esclusa in quanto estremo dell'intervallo.

- 8. In effetti $\tan(\pi/4) = 1$ mentre $\tan(3\pi/4) = -1$. La funzione $\tan x$ è strettamente crescente dove definita, in quanto la sua derivata è pari a $1 + \tan^2 x$, quindi sempre positiva. Tuttavia la funzione non è definita in $x = \pi/2 \in [\pi/4, 3\pi/4]$ ed in particolare $\lim_{x \to \pi/2^-} \tan x = +\infty$ (da cui $\tan x > 1$ per $\pi/4 \le x < \pi/2$) e $\lim_{x \to \pi/2^+} \tan x = -\infty$ (da cui $\tan x < -1$ per $\pi/2 < x \le 3\pi/4$). Ciò non contraddice il teorema degli zeri perché la funzione non è continua nell'intervallo indicato.
- 9. Essendo $f(x) \neq 0$ per ogni x, possiamo dedurre che

$$\frac{f'(x)}{f(x)} = 1$$
 \Leftrightarrow $\frac{d}{dx}\log(f(x)) = 1$

e integrando ambo i membri e applicando il teorema fondamentale del calcolo e il fatto che f(0)=1

$$\int_0^x \frac{d}{dt} \log(f(t)) dt = \int_0^x 1 dt \quad \Leftrightarrow \quad \log(f(x)) = x \quad \Leftrightarrow \quad f(x) = e^x$$

10. Poiché in $4\pi/3$ si ha un estremo, la derivata di f si deve annullare in $4\pi/3$. Mettendo a sistema con la condizione $f(2\pi/3)=1$ si ottiene perciò

$$\begin{cases} -\frac{a}{2} + \frac{\sqrt{3}}{2}b = 0\\ a\frac{\sqrt{3}}{2} - \frac{b}{2} = 1 \end{cases}$$

che ha l'unica soluzione $a=\sqrt{3},\ b=1$. La funzione risulta quindi $f(x)=\sqrt{3}\sin x+\cos x$ che si può riscrivere come $f(x)=2\sin(x+\frac{\pi}{6}),$ di periodo 2π .